This datasheet describes the specification according to the standard 1288 for “Characterization and Presentation of Specification Data for Image Sensors and Cameras of the European Machine Vision Association (EMVA)” (see www.standard1288.org or the Zenodo EMVA 1288 community) release 3.0 with proprietary extensions from AEON. The measurements were performed with the AEON ACC3 Release 6, 18.07.2016, SN 0005(MatrixVision). The performance parameters and estimated accuracy of the measurements are described in the technical report for the instrument, its calibration in the corresponding specification and calibration report.

Measurements performed by T.Renner, Matrix Vision GmbH

<table>
<thead>
<tr>
<th>Vendor</th>
<th>MATRIX VISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>mvBlueCOUGAR-XD107G</td>
</tr>
<tr>
<td>Serial number</td>
<td>GX200376</td>
</tr>
<tr>
<td>Sensor diagonal</td>
<td>17.55 mm</td>
</tr>
<tr>
<td>Lens category</td>
<td>C-Mount</td>
</tr>
<tr>
<td>Resolution</td>
<td>3216 × 2208, 14 bit</td>
</tr>
<tr>
<td>Pixel size</td>
<td>4.50 µm × 4.50 µm</td>
</tr>
<tr>
<td>Sensor type</td>
<td>CMOS</td>
</tr>
<tr>
<td>Shutter type</td>
<td>Global</td>
</tr>
<tr>
<td>Overlap capabilities</td>
<td>Overlapping</td>
</tr>
<tr>
<td>Maximum frame rate</td>
<td>16.8 Hz</td>
</tr>
<tr>
<td>Interface type</td>
<td>GigE Vision</td>
</tr>
</tbody>
</table>

Type of data presented: Single

Operation point 1, (page 3)

- Wavelength centroid: 536.0 nm
- Wavelength FWHM: 31.0 nm
- Gain, black-level: LCG 12/0dB, 0.2

Optional data measured

- None

![Graph of quantum efficiency vs. wavelength](image-url)
EMVA 1288 Summary Sheet for Operating Point 1

<table>
<thead>
<tr>
<th>Type of data</th>
<th>Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure control</td>
<td>By irradiance</td>
</tr>
<tr>
<td>Exposure time</td>
<td>19.00 ms</td>
</tr>
<tr>
<td>Frame rate</td>
<td>3.5 Hz</td>
</tr>
<tr>
<td>Data transfer mode</td>
<td>Mono12</td>
</tr>
</tbody>
</table>

Gain, black-level LCG	12/0dB, 0.2
Environmental temperature	23.4°C
Camera body temperature	42.4°C
Wavelength, centr., FWHM	536 nm, 31.0 nm

Photon transfer m0651, 536 nm, 09.11.2017

<table>
<thead>
<tr>
<th>Gray value - dark value (DN)</th>
<th>0</th>
<th>5.000</th>
<th>10.000</th>
<th>15.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono fit</td>
<td>12.000</td>
<td>10.000</td>
<td>8.000</td>
<td>6.000</td>
</tr>
</tbody>
</table>

\[
\text{mono: } \text{var(dark)} = 7.70 \text{ DN}^2, K = 0.643 \pm 0.4\%
\]

SNR m0651, 536 nm, 09.11.2017

<table>
<thead>
<tr>
<th>Irradiation (photons/pixel)</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10,000</th>
<th>1e+06</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono data</td>
<td>1.000</td>
<td>0.43</td>
<td>0.25</td>
<td>0.15</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>mono fit</td>
<td>1.000</td>
<td>0.43</td>
<td>0.25</td>
<td>0.15</td>
<td>0.09</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\[
\text{SNR} \max = 157, 43.9 \text{ dB}, 7.3 \text{ bit}
\]

\[
\frac{1}{\text{SNR} \max} = 0.64 \%
\]

\[
\text{PRNU}_{1288} = 0.64 \%
\]

Temporal dark noise & DSNU

\[
\sigma_{y, \text{dark}} = 2.77 \text{ DN}, \text{DSNU}_{1288} = -\text{DN}
\]

\[
\sigma_d = 4.29 \text{ e}^-, \text{DSNU}_{1288} = -\text{e}^-
\]

Signal-to-noise ratio & PRNU

\[
\text{SNR}_{\text{max}} = 157, 43.9 \text{ dB}, 7.3 \text{ bit}
\]

\[
\frac{1}{\text{SNR}_{\text{max}}} = 0.64 \%
\]

\[
\text{PRNU}_{1288} = 0.64 \%
\]

Nonlinearity

\[
\text{LE} = 0.21 \%
\]

\[
\text{LE}_{\min} = -0.27 \%
\]

\[
\text{LE}_{\max} = 0.15 \%
\]

Sensitivity & saturation

\[
\mu_p,\text{min} = 6.75 \text{ p}, 0.333 \text{ p}/\mu m^2
\]

\[
\mu_p,\text{sat} = 34222 \text{ p}, 1690 \text{ p}/\mu m^2
\]

\[
\mu_e,\text{min} = 4.85 \text{ e}^-, 0.239 \text{ e}^-/\mu m^2
\]

\[
\mu_e,\text{sat} = 24581 \text{ e}^-, 1214 \text{ e}^-/\mu m^2
\]

Dynamic range

\[
\text{DR} = 5073, 74.1 \text{ dB}, 12.3 \text{ bit}
\]

Dark current

\[
\mu_c,\text{mean} = -\text{DN}/s
\]

\[
\mu_c,\text{mean} = -\text{e}^-/s
\]

\[
\mu_c,\text{var} = -\text{e}^-/s
\]

Quantum efficiency

\[
\eta = 71.8\%
\]

Overall system gain

\[
K = 0.643 \text{ DN/e}^-
1/K = 1.556 \text{ e}^-/\text{DN}
\]

--

Copyright Matrix Vision, 2017
This datasheet describes the specification according to the standard 1288 for “Characterization and Presentation of Specification Data for Image Sensors and Cameras of the European Machine Vision Association (EMVA)” (see www.standard1288.org or the Zenodo EMVA 1288 community) release 3.0 with proprietary extensions from AEON. The measurements were performed with the AEON ACC3 Release 6, 18.07.2016, SN 0005(MatrixVision). The performance parameters and estimated accuracy of the measurements are described in the technical report for the instrument, its calibration in the corresponding specification and calibration report.

Measurements performed by T.Renner, Matrix Vision GmbH

Vendor | MATRIX VISION
Model | mvBlueCOUGAR-XD107G
Serial number | GX205097
Sensor diagonal | 17.55 mm
Lens category | C-Mount
Resolution | 3216 × 2208, 12 bit
Pixel size | 4.50 µm × 4.50 µm
Sensor | IMX420
Sensor type | CMOS
Shutter type | Global
Overlap capabilities | Overlapping
Maximum frame rate | 16.8 Hz
Interface type | GigE Vision

Type of data presented | Single
Operation point 1, (page 3)
Wavelength centroid | 536.0 nm
Wavelength FWHM | 31.0 nm
Gain, black-level | 0dB, 0.1

Optional data measured | None

![Graph of quantum efficiency vs wavelength](image)
EMVA 1288 Summary Sheet for Operating Point 1

Type of data	Single	Gain, black-level	0dB, 0.1
Exposure control	By irradiance	Environmental temperature	22.7°C
Exposure time	17.00 ms	Camera body temperature	46.8°C
Frame rate	8.0 Hz	Internal temperature(s)	—
Data transfer mode	Mono12	Wavelength, centr., FWHM	536 nm, 31.0 nm

Quantum efficiency

\[\eta = 68.6\% \]

Overall system gain

\[K = 0.160 \text{ DN/e}^- \]
\[1/K = 6.236 \text{ e}^-/\text{DN} \]

Temporal dark noise & DSNU

\[\sigma_{y,\text{dark}} = 0.96 \text{ DN} \]
\[\text{DSNU}_{1288} = 0.34 \text{ DN} \]
\[\sigma_d = 5.74 \text{ e}^- \]
\[\text{DSNU}_{1288} = 2.11 \text{ e}^- \]

Signal-to-noise ratio & PRNU

\[\text{SNR}_{\text{max}} = 158 \]
\[1/\text{SNR}_{\text{max}} = 44.0 \text{ dB} \]
\[1/\text{SNR}_{\text{max}} = 7.3 \text{ bit} \]
\[\text{PRNU}_{1288} = 0.63\% \]
\[\text{PRNU}_{1288} = 0.74\% \]

Nonlinearity

\[\text{LE} = 0.17\% \]
\[\text{LE}_{\text{min}} = -0.20\% \]
\[\text{LE}_{\text{max}} = 0.14\% \]

Sensitivity & saturation

\[\mu_{\text{p, min}} = 9.53 \text{ p}/\mu\text{m}^2 \]
\[\mu_{\text{p, sat}} = 0.471 \text{ p}/\mu\text{m}^2 \]
\[\mu_{\text{e, min}} = 36330 \text{ p} \]
\[\mu_{\text{e, sat}} = 1794 \text{ p}/\mu\text{m}^2 \]
\[\mu_{\text{e, min}} = 6.54 \text{ e}^- \]
\[\mu_{\text{e, sat}} = 0.323 \text{ e}^-/\mu\text{m}^2 \]
\[\mu_{\text{e, min}} = 24925 \text{ e}^- \]
\[\mu_{\text{e, sat}} = 1231 \text{ e}^-/\mu\text{m}^2 \]

Dynamic range

\[\text{DR} = 3813 \]
\[\text{DR} = 71.6 \text{ dB} \]
\[\text{DR} = 11.9 \text{ bit} \]

Dark current

\[\mu_{\text{c, mean}} = -2.9 \text{ DN/s} \]
\[\mu_{\text{c, mean}} = -18.2 \text{ e}^-/\text{s} \]
\[\mu_{\text{c, var}} = 1.1 \text{ e}^-/\text{s} \]