MATRIX VISION - mvBlueFOX3 Technical Documentation
Application Usage


wxPropView is an interactive GUI tool to acquire images and to configure the device and to display and modify the device properties of MATRIX VISION GmbH hardware. After the installation you can find wxPropView

  • as an icon with the name "wxPropView" on the desktop (Windows) or
  • in "~/mvimpact-acquire/apps/mvPropView/x86" (Linux).
wxPropView - Introduction

How to work with wxPropView

wxPropView - Working with wxPropView

Depending on the driver version, wxPropView starts with the Quick Setup Wizard (as soon as a camera with the right firmware version was selected used or a single camera with the right firmware was found) or without it.

Quick Setup Wizard

mvIMPACT Acquire 2.11.3

The Quick Setup Wizard is a tiny and powerful single window configuration tool to optimize the image quality automatically and to set the most important parameters, which affect the image quality, in an easy way manually and to get a preview of this changes. Settings will be accepted by clicking ok, otherwise the changes are cancelled.

Figure 1: Quick Setup Wizard started

Depending on the camera spectrum (gray or color sensor), it will automatically pre-set the camera so that image quality is usually as best as possible.

"For all cameras:"
Image format is chosen as 10 bit (if possible) as a good compromise on image quality and speed.
It will further set

  • "Exposure" to Auto,
  • "Gain" to Auto,
  • "Frame rate" to Auto based on current settings of the camera, and
  • switches camera into continuous mode

"In case of gray:"
The above settings will be also applied whenever the "Gray Preset" button is pressed. For gray cameras it is herewith assumed that image processing prefers a linear camera response.

"In case of color:"
It will additionally set

  • "White balance" in the camera to Auto, and will apply
  • a host based moderate "Gamma correction" (1.8), and lastly it will apply
  • a host (PC) based sensor specific "Color Correction Matrix" and use the respective "sRGB display matrix".

These settings will also be applied whenever the "Color Preset" button is pressed. It is herewith assumed that color camera image is optimized for best human visual feedback.

Changing the Presets

There are 3 presets:

  • Gray
  • Color
  • Factory

Factory can be used as a fall back to quickly skip or remove all presets and load the factory default settings.

Modifying Settings

All auto modes can be switched off and all settings, such as Gain, Exposure etc. can be subsequently modified by using:

  • the sliders,
  • the arrow keys, or
  • entering real values with your keyboard.

Toggling Gamma button loads or unloads a host based 10 bit Gamma correction with a moderate value of 1.8 into the signal processing path. Switch Gamma on if you require a gray level camera image to appear natural for the human eye.

Toggling Color+ button switches both CCM and sRGB display matrix on and off. This optimizes the sensor color response for the human eye and goes in conjunction with a display color response. Because sRGB displays are mostly used and this is the default color space in Windows OS, these are preselected. If you require other display matrices (e.g. Adobe or WideGamut) feel free to use the tree mode of wxPropView and select ColorTwistOutputCorrection accordingly.

Setting Black Level
Black level can be used if you require dark portions in the image to appear even darker or brighter. Please note that this slider combines analog and digital settings meaningfully.

Setting Gain
Gain settings also combine analog and digital registers into one slider setting.

Setting Saturation
Saturation setting increases the color saturation to make the image appear more colored. It does not change uncolored parts in the image nor changes the color tone or hue.

How to disable Quick Setup Wizard

Uncheck the checkbox "Show This Display When A Device Is Opened" to disable the Quick Setup Wizard to be called automatically. Use the "Wizards" menu and select "Quick Setup" to open the Quick Setup Wizard once again.

How to Return to the Tree Mode

Use OK to use the values and settings of the Quick Setup Wizard and go back to the tree mode of wxPropView.

Use Cancel to discard the Quick Setup Wizard values and settings and go back to wxPropView and use the former (or default) settings.

Image Display Functions

Quick Setup Wizard allows zooming into the image by right clicking in the image area and unchecking "Fit To Screen" mode. Use the mouse wheel to zoom in or out. Check "Fit To Screen" mode, if you want the complete camera image to be sized in the window screen size.

Known Restrictions

In cases of Tungsten (artificial) light, camera brightness may tend to oscillations if Auto functions are used. This can be minimized or avoided by setting the frame frequency to an integer divisor of the mains frequency.

  • Example:
    • Europe: 50 Hz; Set frame rate to 100, 50, 25 12.5 fps or appropriate.
    • In countries with 60 Hz use 120, 60, 30 or 15… accordingly.

First View of wxPropView

wxPropView consists of several areas:

Figure 2: wxPropView started
  • "Menu Bar"
    (to work with wxPropView using the menu)
  • "Upper Tool Bar"
    (to select and initialize a device, acquire images, play a recorder sequence)
  • "Left Tool Bar"
    (to hide and show parts of the GUI)
  • "Status Tool Bar"
  • "Main Window" with
    • "Grid"
      (tree control with the device settings accessible by the user)
    • "Display"
      (for the acquired images)
  • "Analysis"
    (information about whole images or an AOI)

By clicking on F1 you will get the HELP dialog.

Now, you can initialize a device by

  • selecting it in the drop down list in the "Upper Tool Bar" and
  • clicking on "Use".

After having successfully initialized a device the tree control in the lower left part of the "Main Window" will display the properties (settings or parameters) (according to the "interface layout") accessible by the user.

Please have a look at the troubleshooting chapter if you neither see the mvBlueFOX3 nor cannot use it.

You've also got the possibility to set your "User Experience". According to the chosen experience, the level of visibility is different:

  • Beginner (basic camera settings/properties are visible)
  • Expert (e.g. all advanced image processing are visible)
  • Guru (all settings/properties are visible)

Properties displayed in light grey cannot be modified by the user. Only the properties, which actually have an impact on the resulting image, will be visible. Therefore, certain properties might appear or disappear when modifying another properties.

To permanently commit a modification made with the keyboard the ENTER must be pressed. If leaving the editor before pressing ENTER will restore the old value.

How to see the first image

As described earlier, for each recognized device in the system the devices serial number will appear in the drop down menu in the upper left corner of the "Upper Tool Bar". When this is the first time you start the application after the system has been booted this might take some seconds when working with devices that are not connected to the host system via PCI or PCIe.

Once you have selected the device of your choice from the drop down menu click on the "Use" button to open it.

When the device has been opened successfully, the remaining buttons of the dialog will be enabled:

Following screenshots are representative and where made using a mvBlueFOX3 camera as the capturing device.

For color sensors, it is recommended to perform a white balance calibration before acquiring images. This will improve the quality of the resulting images significantly.

Figure 3: wxPropView - First start


Now, you can capture an image ("Acquisition Mode": "SingleFrame") or display live images ("Continuous"). Just

  • select an "Acquisition Mode" e.g. "SingleFrame" and
  • click the "Acquire" button.
The techniques behind the image acquisition can be found in the developers sections.
Figure 4: wxPropView - First image

Three different acquisition modes are available:

  • Continuous ("Live Mode")
  • MultiFrame ("Number of Single Snaps")
  • SingleFrame ("Single Snap")

The frame rate depends on

  • the camera,
  • the pixel clock of the sensor and
  • the "Acquisition Frame Rate".

If you want to have a fixed frame rate using the "Continuous" mode, GenICam offers the property "Setting -> Base -> Camera -> GenICam -> Acquisition Control -> Acquisition Frame Rate" (from 5 fps to maximum of the camera in 0.1 increments). Just adapt this property to your needs.

Alternatively, if you need frame rates below 5 fps, you can use Timers. In the use case Creating synchronized acquisitions using timers, for example, a frame rate of 1 fps is generated.

mvIMPACT Acquire 2.37.0

To save an image directly from the live display directly, just

  1. Right-click on the display.
  2. Either select "Save Current Image" or "Copy Current Image To Clipboard".

With "Save Current Image" a dialog will appear, where you can specify the destination folder and the file format.

With "Copy Current Image To Clipboard" you can open you prefered image editing tool an paste the clipboard into it. For this functionality you can also use the shortcuts CTRL-C and CTRL-V.

Figure 5: wxPropView - Using the record mode.

Record Mode

It is also possible to record image sequences using wxPropView.

  1. For this, you have to set the size of the recorder in "System Settings -> RequestCount" e.g. to 100.
    This will save the last 100 requests in the request queue of the driver, i.e. the image data including the request info like frame number, time stamp, etc.
  2. Afterwards you can start the recording by clicking the Rec. button.
  3. With the Next and Prev. buttons you can display the single images.

If you switched on the request info overlay (righ-click on the display area and select the entry to activate this feature), these information will be displayed on the image, too. With the timestamp you can see the interval of the single frames in microseconds.

Figure 6: wxPropView - Using the record mode.

Hard Disk Recording

You can save acquired images to the hard disk the following way:

  1. In the "Menu Bar" click on "Capture -> Recording -> Setup Hard Disk Recording".
  2. Confirm with "Yes".
  3. Afterwards select the target folder for the images.
  4. Finally, choose the file format of the acquired images.
Figure 7: wxPropView - Hard Disk Recording.

Snapshot Mode

mvIMPACT Acquire 2.37.0

The snapshot mode can be used to save a sequence of images from the current acquisition to the hard disk directly.

Figure 8: wxPropView - Hard Disk Recording.

For this , please follow these steps:

  1. In the "Menu Bar" click on "Capture -> Setup Snapshot To Hard Disk Mode".
  2. Confirm with "Yes", that you want to enable the snapshot mode.
  3. Select the destination folder on your hard disk.
  4. Select the desired file format of the image(s).
  5. Now you can save the current image by pressing the space bar.

Using the analysis plots

With the analysis plots you have the possiblity to get image details and to export them.

Spatial noise histogram

The spatial noise histogram calculates and evalutates statistically the difference between two neighbouring pixels in vertical and horizontal direction. I.e. it shows the sensor's spatial background pattern like the sensitivity shifts of each pixel. An ideal sensor or camera has a spatial noise of zero. However, you have to keep in mind the temporal noise as well.

Figure 9: wxPropView - Spatial noise histogram

Read: Channel::Direction (Mean difference, most frequent value count/ value, Standard deviation)

Example: For a single channel(Mono) image the output of 'C0Hor(3.43, 5086/ 0, 9.25), C0Ver(3.26, 4840/ 0, 7.30) will indicate that the mean difference between pixels in horizontal direction is 3.43, the most frequent difference is 0 and this difference is present 5086 times in the current AOI. The standard deviation in horizontal direction is 9.25. The C0Ver value list contains the same data but in vertical direction.

Temporal noise histogram

The temporal noise histogram shows the changes of a pixel from image to image. This method is more stable because it is relatively independent from the image content. By subtracting two images, the actual structure is eliminated, leaving the change of a pixel from image to image, that is, the noise. When capturing images, all parameters must be frozen, all automatic mechanisms have to be turned off and the image may not have underexposed or saturated areas. However, there are no picture signals without temporal noise. Light is a natural signal and the noise always increases with the signal strength. If the noise only follows the natural limits, then the camera is good. Only if additional noise is added the camera or the sensor has errors.

Figure 10: wxPropView - Temporal noise histogram

Read: Channel# (Mean difference, most frequent value count/ value, Standard deviation)

Example: For a single channel(Mono) image the output of 'C0(3.43, 5086/ 0, 9.25) will indicate that the mean difference between pixels in 2 consecutive images is 3.43, the most frequent difference is 0 and this difference is present 5086 times in the current AOI. The standard deviation between pixels in these 2 images is 9.25. Please note the impact of the 'Update Interval' in this plot: It can be used to define a gap between 2 images to compare. E.g. if the update interval is set to 2, the differences between image 1 and 3, 3 and 5, 5 and 7 etc. will be calculated. In order to get the difference between 2 consecutive images the update interval must be set to 1!

Storing and restoring settings

When wxPropView is started for the first time, the values of properties set to their default values will be displayed in green to indicate that these values have not been modified by the user so far. Modified properties (even if the value is the same as the default) will be displayed in black.

Figure 11: wxPropView - Storing settings

Settings can be stored in several ways (via the "Menu Bar": "Action -> Capture Settings -> Save Active Device Settings"):

  • "As Default Settings For All Devices Belonging To The Same Family (Per User Only)": As the start-up parameters for every device belonging to the same family, e.g. for mvBlueCOUGAR-X, mvBlueCOUGAR-XD.
  • "As Default Settings For All Devices Belonging To The Same Family And Product Type": As the start-up parameters for every device belonging to the same product, e.g. for any mvBlueCOUGAR-X but not for mvBlueCOUGAR-XD.
  • "As Default Settings For This Device(Serial Number)": As the start-up parameters for the currently selected device.
  • "To A File": As an XML file that can be used e.g. to transport a setting from one machine to another or even to use the settings configured for one platform on another (Windows <-> Linux).

During the startup of a device, all these setting possibilities show different behaviors. The differences are described in chapter Settings behaviour during startup

Restoring of settings previously stored works in a similar way. After a device has been opened the settings will be loaded automatically as described in Settings behaviour during startup

However, at runtime the user has different load settings possibilities (via the "Menu Bar": "Action -> Capture Settings -> Load Active Device Settings")

  • explicitly load the device family specific settings stored on this machine (from "The Default Settings Location For This Devices Family (Per User Only)")
  • explicitly load the product specific settings stored on this machine (from "The Default Settings Location For This Devices Family And Product Type)")
  • explicitly load the device specific settings stored on this machine (from "The Default Settings Location For This Device(Serial Number)")
  • explicitly load device family specific settings from a XML file previously created ("From A File")
Since mvIMPACT Acquire 2.9.0 GenICam devices will be able to save their properties in a XML File, only if the properties have the streamable attribute set (for more information refer to the GenICam standard specification). Properties with no streamable attribute set, will be silently ignored when saving, which means they will not be saved in the XML file. For MATRIX VISION GenICam cameras, starting with firmware version 1.6.414 the streamable attribute is set for all the necessary properties.

Since mvIMPACT Acquire 2.9.0 and again in version 2.11.0 storing and loading of camera settings in a XML file for the GenICam interface layout has been updated. As a result XML files created with newer versions of mvIMPACT Acquire might not be readable on systems with older version of mvIMPACT Acquire installed. XML files created on systems with earlier versions of mvIMPACT Acquire will always be readable this or newer versions. See the following table for details.
mvIMPACT Acquire VersionLoading a XML settings file created with mvIMPACT Acquire version < 2.9.0Loading a XML settings file created with mvIMPACT Acquire version 2.9.0 - 2.10.1Loading a XML settings file created with mvIMPACT Acquire version 2.11.0 or later
< 2.9.0 YES NO NO
2.9.0 - 2.10.1 YES YES NO
>= 2.11.0 YES YES YES
Since mvIMPACT Acquire 2.28.0 it is possible for devices operated in the GenICam interface layout to store settings including including sequencer set and user set (see SFNC for details) data by specifying appropriate flags during the storage operation. Settings stored like this cannot be loaded by previous mvIMPACT Acquire versions.
For devices operated in the GenICam interface layout further restriction apply: Settings created with a certain product type can only be used with other devices belonging to the exact same type as defined by the property Product inside the device list (the one device specific property list that is accessible without initializing the device before). Even if a setting can be used with various firmware versions it is recommended to use one setting for multiple devices all updated to the very same firmware version to avoid compatibility problems.
With "Action -> Capture Settings -> Manage..." you can delete the settings which were saved on the system.
Figure 12: wxPropView - Restoring settings


All properties and functions can be displayed in the list control on the lower left side of the dialog. To modify the value of a property select the edit control right of the properties name. Property values, which refer to the default value of the device, are displayed in green. A property value once modified by the user will be displayed in black (even if the value itself has not changed). To restore its default value of a single property

  • right click on the name of the property and
  • select "Restore Default".

To restore the default value for a complete list (which might include sub-lists)

  • right click on the name of a list and
  • select "Restore Default".

In this case a popup window will be opened and you have to confirm again.

Figure 13: wxPropView - Restore the default value of a property

Also the user might want to set all (or a certain range of) values for properties that store multiple values with a single operation. If supported by the property, this can also be achieved by right clicking on the PARENT grid element. If the property allows this modification the pop up menu will again contain additional entries:

Figure 14: wxPropView - Setting multiple property values

It's possible to either set all (or a range of) elements of the property to a certain value OR to define a value range, that then will be applied to the range of property elements selected by the user. The following example will explain how this works:

Figure 15: wxPropView - Setting multiple property values within a certain value range

In this sample the entries 0 to 255 of the property will be assigned the value range of 0 to 255. This will result in the following values AFTER applying the values:

Figure 16: wxPropView - After applying the value range to a property


Method appears as entries in the tree control as well. However, their name and behavior differs significantly from the behavior of properties. The names of method objects will appear in 'C' syntax like e.g. "int function( char*, int )". This will specific a function returning an integer value and expecting a string and an integer as input parameters. To execute a method object

  • right click on the name of a method and
  • select "Execute" from the popup menu:
Figure 17: wxPropView - Calling a method object

Parameters can be passed to methods by selecting the edit control left of a method object. Separate the parameters by blanks. So to call a function expecting a string and an integer value you e.g. might enter "testString 0" into the edit control left of the method.

The return value (in almost every case an error code as an integer) will be displayed in the lower right corner of the tree control. The values displayed here directly correspond the error codes defined in the interface reference and therefore will be of type TDMR_ERROR or TPROPHANDLING_ERROR.

Copy grid data to the clipboard

Since wxPropView version 1.11.0 it is possible to copy analysis data to the clipboard. The data will be copied in CSV style thus can be pasted directly into tools like Open Office™ or Microsoft® Office™.


  • right-click on the specific analysis grid when in numerical display mode and
  • select "Copy grid to clipboard" from the pop up menu.
Figure 18: wxPropView - Copying grid data to the clipboard

Import and Export images

wxPropView offers a wide range of image formats that can be used for exporting captured image to a file. Some formats e.g. like packed YUV 4:2:2 with 10 bit per component are rather special thus they can't be stored into a file like e.g. offered by the BMP file header. When a file is stored in a format, that does not support this data type wxPropView will convert this image into something that matches the original image format as close as possible. This, however, can result in the loss of data. In order to allow the storage of the complete information contained in a captured image wxPropView allows to store the data in a raw format as well. This file format will just contain a binary dump of the image with no leader or header information. However, the file name will automatically be extended by information about the image to allow the restoring of the data at a later time.

All image formats, that can be exported can also be imported again. Importing a file can be done in 3 different ways:

  • via the menu (via the "Menu Bar": "Action -> Load image...")
  • by dragging an image file into an image display within wxPropView
  • by starting wxPropView from the command line passing the file to open as a command line parameter (on Windows® e.g. "wxPropView.exe MyImage.png" followed by [ENTER])

When importing a "*.raw" image file a small dialog will pop up allowing the user to define the dimensions and the pixel format of the image. When the file name has been generated using the image storage function offered by wxPropView, the file name will be passed and the extracted information will automatically be set in the dialog thus the user simply needs to confirm this information is correct.

Figure 19: wxPropView - Raw image file import

Setting up multiple display support and/or work with several capture settings in parallel

wxPropView is capable of

  • dealing with multiple capture settings or acquisition sequences for a single device and in addition to that
  • it can be configured to deal with multiple image displays.

The amount of parallel image displays can be configured via the command line parameter "dcx" and "dcy". In this step by step setup wxPropView has been started like this from the command line:

wxPropView dcx=1 dcy=2 

This will result in 1 display in horizontal direction and 2 in vertical direction.

mvIMPACT Acquire 2.18.1

Is is also possible to change the amount of display at runtime via "Settings -> Image Displays -> Configure Image Display Count":

Figure 20: wxPropView - Create capture setting

Additional capture settings can be created via "Menu Bar": "Capture -> Capture Settings -> Create Capture Settings". The property grid will display these capture settings either in "Developers" or in "Multiple Settings View".

In GenICam interface layout multiple capture settings are NOT supported. However, you can define different acquisition sets using the Sequencer Control.

Bit-shifting an image

wxPropView shows snapped or live images in the display area of the GUI. The area, however, shows the most significant bits (msb) of the image in the 8 bit display.

The following image shows how a mid-grey 12 bit pixel of an image is displayed with 8 bit. Additionally, two shifts are shown.

Figure 21: Mid-grey 12 bit pixel image and 8 bit display with 2 example shifts

In this particular case, the pixel will be brighter (as the most significant bits are 1’s). Perhaps you already recognized it. Each shift means that each pixel value is multiplied or divided by 2 according to the direction.

Anyway, there is one restriction in the 8 bit display:

If the pixel value is greater than 255, the pixel value will be clipped to 255. To describe this from a programmer’s view; a represents the pixel value:

 a = ( a > 255 ) ? 255 : a 

With wxPropView you can shift the bits in the display using the left and right arrow keys. Furthermore you can turn on the monitor display to compare the images synchronously.

wxPropView - Bit-shifting an Image

Changing the view of the property grid to assist writing code that shall locate driver features

With wxPropView it is possible to switch the views between "Standard View" (user-friendly) and "Developers View". While the first (default) view will display the device drivers feature tree in a way that might be suitable for most users of a GUI application it might present the features in a slightly different order as they actually are implemented in the device driver. The developers view switches the tree layout of the application to reflect the feature tree exactly like it is implemented an presented by the SDK. It can be helpful when writing code that shall locate a certain property in the feature tree of the driver using the C, C++, Java, .NET or Python interface. The feature hierarchy displayed here can directly be used for searching for the features using the "ComponentLocator (C++/.NET)" objects or "DMR_FindList (C)" and "OBJ_GetHandleEx (C)" functions.

Figure 22: Developers View

Accessing log files

mvIMPACT Acquire 2.11.9

Using Windows, it is possible to access the log files generated by MATRIX VISION via the Help menu. Sending us the log files will speed up support cases.

Figure 23: wxPropView - Help menu

The options are to

See also
Accessing log files using Linux

How to configure a device

As described above, after the device has been initialized successfully in the "Grid" area of the GUI the available "interface layout" properties are displayed in a hierarchy tree. GenICam is the default interface layout of the mvBlueFOX3 and we recommend to use it!

wxPropView - Configuring a device

The next chapter will show how to set the interface layout and which interface you should use according to your needs.


Changing interface to GenICam or device specific

The mvIMPACT Acquire interface internally uses the GenICam runtime libs, so that it can be considered as an user application written with the GenICam interface. This behavior has several advantages:

You can change the property interfaceLayout with wxPropView to select the preferred interface.

  • When GigE Vision and GenICam compliant devices from several vendors shall be used in the same application it's recommended to use the "GenICam" interface layout only in order to keep the application code simple.
  • When several different MATRIX VISION devices (e.g. a frame grabber, a USB camera and a GigE Vision camera) shall be operated by the same application, it's recommended to use the device specific interface for the same reasons.
  • When an application shall be able to work with every MATRIX VISION device and every GigE Vision and GenICam compliant device both approaches make sense however a mixture between the 2 worlds can't be avoided.

To specify the InterfaceLayout for all devices globally, you can do this via the "Action -> Default Device Interface Layout" in the "Menu Bar":

Figure 24: Global selection of the interface layout for all devices

If you want to specify the InterfaceLayout for the used device, you can do this via "Device Properties" in the section "Device -> InterfaceLayout":

Figure 25: Selection of the interface layout for this specific device
If a device is opened, but the selected interface layout has been declared deprecated, a message box will show up to make sure that the interface layout has not been changed by accident.
Figure 26: Warning message if an interface layout is selected which has been declared deprecated for the used device
See also
Standard Feature Naming Convention of GenICam properties

White balance of a camera device (color version)

Start the wxPropView and initialize the device by clicking "Use" and start a "Continuous" acquisition.

Figure 27: wxPropView - Continuous mode

While using a color version of the camera, the PC will calculate a color image from the original gray Bayer mosaic data. For getting correct colors when working with a Bayer mosaic filter you have to calibrate the white balance (this must be performed every time the lighting conditions change).

The "White Balance Control" can be found in "Setting -> Base -> Camera -> GenICam -> Analog Control -> Balance White Auto". Just select "Continuous" and you will get a white balanced image.

Figure 28: wxPropView - Selecting WhiteBalance profile
Figure 29: wxPropView - White balance summary

Configuring different trigger modes

To configure a device for a triggered acquisition, in wxPropView the property "Setting -> Base -> Camera -> GenICam -> Acquisition Control -> Trigger Selector" is available.

The supported trigger modes of each sensor are described in the More specific data of each sensor.

All trigger modes are defined by an enumeration:

  • TCameraTriggerMode and TCameraTriggerSource

There is also a chapter "Getting a triggered image" chapter, which is available in the "mvIMPACT Acquire API" manuals.

Testing the digital inputs

For performance reasons, device drivers will not automatically update their digital input properties if nobody is interested in the current state. Therefore, in order to check the current state of a certain digital input, it is necessary to manually refresh the state of the properties. To do this please right-click on the property you are interested in and select "Force Refresh" from the pop-up menu.

Some devices might also offer an event notification if a certain digital input changed its state. This event can then be enabled

  • via the "EventSelector" in "Setting -> Base -> Camera -> GenICam -> Event Control".
  • Afterwards, a callback can be registered by right-clicking on the property you are interested in again.
  • Now, select "Attach Callback" from the pop-up menu and switch to the "Output" tab in the lower right section of wxPropView (Analysis tabs).

Whenever an event is send by the device that updates one of the properties a callback has been attached to, the output window will print a message with some information about the detected change.

Figure 30: wxPropView - Call refresh

Saving user settings in the non-volatile flash memory

The mvBlueFOX3 camera offers the possibility, to save up to 4 user sets in the camera's flash memory directly. This means that all camera specific settings you've adjusted via wxPropView can be saved in a non-volatile memory.

Example: You have connected a flash via exposure out of the camera and you want to avoid an overload of the flash by maloperation, you can save a suitable shutter time, with which the camera will start.

To save your specific settings, set you properties in the "Setting -> Camera -> GenICam" section of wxPropView. Then, select in "User Set Control" your user set with the "User Set Selector", for example "UserSet1". Afterwards, save the user set with "int UserSetSave()". Finally, if you want that the camera starts with a specific user set (after power up), you have to select it with the "User Set Default Selector".

Figure 31: wxPropView - User set control
A firmware update will delete all saved register settings!

Command-line options

It is possible to start wxPropView via command line and controlling the starting behavior using parameters. The supported parameter are as follows:

Parameter Description
width or w Defines the startup width of wxPropView. Example: width=640
height or h Defines the startup height of wxPropView. Example: height=460
xpos or x Defines the startup x position of wxPropView.
ypos or y Defines the startup x position of wxPropView.
splitterRatio Defines the startup ratio of the position of the property grids splitter. Values between > 0 and < 1 are valid. Example: splitterRatio=0.5
propgridwidth or pgw Defines the startup width of the property grid.
debuginfo or di Will display debug information in the property grid.
dic Will display invisible (currently shadowed) components in the property grid.
displayCountX or dcx Defines the number of images displayed in horizontal direction.
displayCountY or dcy Defines the number of images displayed in vertical direction.
fulltree or ft Will display the complete property tree (including the data not meant to be accessed by the user) in the property grid. Example (Tree will be shown): fulltree=1
device or d Will directly open a device with a particular serial number. * will take the first device. Example: d=GX000735
qsw Will forcefully hide or show the Quick Setup Wizard, regardless of the default settings. Example (Quick Setup Wizard will be shown): qsw=1
live Will directly start live acquisition from the device opened via device or d directly. Example (will start the live acquisition): live=1

Sample (Windows)

wxPropView.exe d=* fulltree=1 qsw=0

This will start the first available device, will hide the Quick Setup Wizard, and will display the complete property tree.


mvDeviceConfigure is an interactive GUI tool to configure MATRIX VISION devices. It shows all connected devices. With mvDeviceConfigure it is possible e.g.

  • to check, if the camera is accessible on host PC,
  • to update firmware of the mvBlueFOX3 or
  • to upload a GenICam XML file.

Various things can also be done without user interaction (e.g. updating the firmware of a device). To find out how to do this please start mvDeviceConfigure and have a look at the available command line options presented in the text window in the lower section (the text control) of the application.


How to update the firmware

With the mvDeviceConfigure tool it is also possible to update the firmware. In the device list, new firmware versions, if available, will be marked in blue.

Since version 2.29.1 for GenICam compliant devices firmware updates will not be installed by the mvIMPACT Acquire driver installation package any more. Firmware archives can be downloaded from the MATRIX VISION website instead. The latest firmware (and previous versions) can always be found in the download area of the corresponding product. Downloaded archives should be copied into the $(MVIMPACT_ACQUIRE_DIR)/Firmware/<product name> folder as then mvDeviceConfigure will automatically check if your devices run with the latest firmware or not.

To update the firmware on a MATRIX VISION device, the following steps are necessary:

Step 1: Device selection

Select the device you want to set up. Select the menu item Action and click on Update firmware.

It is also possible to select the action with a right click on the device.
Figure 29: mvDeviceConfigure - Select action

Step 2: Start firmware update

  • You have to close applications using the device and click Ok.
Figure 30: mvDeviceConfigure - Close all applications
  • You have to select the update file
    • mvBlueFOX3: mvBlueFOX3_Update.mvu
Figure 31: mvDeviceConfigure - Select firmware file
All current camera settings will be lost when updating the firmware. Network configuration settings (such as static IP settings etc.) on the other hand will not be affected. UserSets may or may not be lost, depending on the Persistent UserSet Settings parameter(more information on this can be found later in this chapter).
  • Confirm the firmware update.
Figure 32: mvDeviceConfigure - Confirm update
  • Afterwards, you will see a progress bar:
Figure 33: mvDeviceConfigure - Progress of firmware update

If the firmware update is successful, the dialog will disappear.

The firmware update is only necessary in some special cases (e.g. to benefit from a new functionality added to the firmware, to fix a firmware related bug or to update the kernel driver). Before updating the firmware be sure what you are doing and have a look into the change log (versionInfo.txt and/or the manual to see if the update will fix your problem).
The firmware update takes several minutes and during this time the application will not respond!

Preserving UserSet settings when updating the Firmware

For devices that are capable of storing UserSet settings on the device itself (mvBlueCOUGAR-X/XD, mvBlueFOX3, etc.) these settings will by default be preserved during firmware updates since mvIMPACT Acquire 2.9.1. This may lead to slightly longer firmware update times. If UserSets are not used, and their persistence during firmware-updates is not desired, the "Persistent UserSet Settings" in the Settings Submenu can be unchecked:

Figure 34: mvDeviceConfigure - UserSet Persistence

This will also accellerate the firmware update process.

How to disable CPU sleep states a.k.a. C states (< Windows 8)

Modern PC's, notebook's, etc. try to save energy by using a smart power management. For this several hardware manufacturers specified the ACPI standard. The standard defines several power states. For example, if processor load is not needed the processor changes to a power saving (sleep) state automatically and vice versa. Every state change will stop the processor for microseconds. This time is enough to cause image error counts!

See also
More informations about ACPI:

To disable the power management on the processor level (so-called "C states"), you can use mvDeviceConfigure:

With Windows XP it is only possible to disable the C2 and C3 states. With Windows Vista / 7 all C states (1,2, and 3) will be disabled.
Please be sure you know what you do! To turn off the processor's sleep states will lead to a higher power consumption of your system.
Modifying the sleep states using mvDeviceConfigure does only affects the current power scheme. For notebooks this will e.g. make a difference depending on whether the notebook is running on battery or not. E.g. if the sleep states have been disabled while running on battery and then the system is connected to an external power supply, the sleep states might be active again. Thus in order to permanently disable the sleep states, this needs to be done for all power schemes that will be used when operating devices.
  1. Start mvDeviceConfigure.
  2. Go to tab "Settings" and unselect "CPU Idle States Enabled".
Figure 35: mvDeviceConfigure - Settings

The sleep states can also be enabled or disabled from a script by calling mvDeviceConfigure like this:

mvDeviceConfigure.exe set_processor_idle_states=1 quit


mvDeviceConfigure.exe set_processor_idle_states=0 quit

The additional quit will result in the application to terminate after the new value has been applied.

With Windows Vista or newer mvDeviceConfigure must be started from a command shell with administrator privileges in order to modify the processors sleep states.

Command-line options

It is possible to start mvDeviceConfigure via command line and controlling the starting behavior using parameters. The supported parameter are as follows:

Parameter Description
setid or id Updates the firmware of one or many devices(syntax: 'id=<serial>.<id>' or 'id=<product>.<id>').
set_processor_idle_states or spis Changes the C1, C2 and C3 states for ALL processors in the current system(syntax: 'spis=1' or 'spis=0').
set_userset_persistence or sup Sets the persistency of UserSet settings during firmware updates (syntax: 'sup=1' or 'sup=0').
update_fw or ufw Updates the firmware of one or many devices.
update_fw_file or ufwf Updates the firmware of one or many devices. Pass a full path to a text file that contains a serial number or a product type per line.
custom_genicam_file or cgf Specifies a custom GenICam file to be used to open devices for firmware updates. This can be useful when the actual XML on the device is damaged/invalid.
update_kd or ukd Updates the kernel driver of one or many devices.
ipv4_mask Specifies an IPv4 address mask to use as a filter for the selected update operations. Multiple masks can be passed here separated by semicolons.
fw_file Specifies a custom name for the firmware file to use.
fw_path Specifies a custom path for the firmware files.
log_file or lf Specifies a log file storing the content of this text control upon application shutdown.
quit or q Ends the application automatically after all updates have been applied.
force or f Forces a firmware update in unattended mode, even if it isn't a newer version.
* Can be used as a wildcard, devices will be searched by serial number AND by product. The application will first try to locate a device with a serial number matching the specified string and then (if no suitable device is found) a device with a matching product string.

The number of commands that can be passed to the application is not limited.

Sample (Windows)

mvDeviceConfigure ufw=BF000666

This will update the firmware of a mvBlueFOX with the serial number BF000666.

mvDeviceConfigure update_fw=BF* 

This will update the firmware of ALL mvBlueFOX devices in the current system.

mvDeviceConfigure update_fw=mvBlueFOX-2* lf=output.txt quit 

This will update the firmware of ALL mvBlueFOX-2 devices in the current system, then will store a log file of the executed operations and afterwards will terminate the application.

mvDeviceConfigure setid=BF000666.5 

This will assign the device ID '5' to a mvBlueFOX with the serial number BF000666.

mvDeviceConfigure ufw=*

This will update the firmware of every device in the system.

mvDeviceConfigure ufw=BF000666 ufw=BF000667

This will update the firmware of 2 mvBlueFOX cameras.

mvDeviceConfigure ipv4_mask=169.254.*;192.168.100* update_fw=GX* 

This will update the firmware of all mvBlueCOUGAR-X devices with a valid IPv4 address that starts with '169.254.' or '192.168.100.'.