This datasheet describes the specification according to the standard 1288 for Characterization and Presentation of Specification Data for Image Sensors and Cameras of the European Machine Vision Association (EMVA) (see www.standard1288.org). The measurements were performed with an AEON ACC3 RGB Release 3, 20.01.2104, SN 0005(). The performance parameters and estimated accuracy of the measurements are described in the technical report for the instrument, its calibration in the corresponding calibration report.

Vendor	MATRIX VISION
Model | mvBlueCOUGAR-X225G
Serial number | GX006726
Sensor diagonal | 11.02 mm
Lens category | C-Mount
Resolution | 2448 × 2050, 14 bit
Pixel size | 3.45 μm × 3.45 μm
Sensor type | CCD
Readout type | Progressive
Transfer type | Interline
Maximum frame rate | 11.8 Hz
Interface type | GigE Vision

Type of data presented | Single

Operation point 1, (page 3)
- Wavelength centroid: 534.2 nm
- Wavelength FWHM: 30.9 nm
- Gain, offset: Gain = -4dB, Offset = 0.45

Optional data measured | None
EMVA 1288 Summary Sheet for Operating Point 1

Type of data
Single

Exposure time
10.0 ms

Frame rate
0.0 Hz

Data transfer mode
Mono14

Gain, offset
Gain = -4dB, Offset = 0.45

Environmental temperature
27.5°C

Camera temperature
49.8°C

Wavelength, cent., FWHM
534 nm, 30.9 nm

Quantum efficiency
\(\eta \) = 0.460

Gain
\(K \) (DN/e) = 3.124

1/K (e/DN) = 0.320

Dark noise & DSNU
\(\sigma_d \) (DN) = 32.29

\(\sigma_0 \) (e) = 10.3

DSNU_{1288} (DN) = —

DSNU_{1288} (e) = —

Signal-to-noise ratio & PRNU
SNR_{max} (dB) = 36.8

SNR_{max} (bits) = 6.1

1/SNR_{max} (%) = 1.44

PRNU_{1288} (%) = —

Nonlinearity
LE (%) = 0.20

Sensitivity & saturation
\(\mu_{p, \text{min}} \) (p) = 23.6

\(\mu_{e, \text{min}} \) (e) = 10.8

\(\mu_{p, \text{sat}} \) (p) = 10527

\(\mu_{e, \text{sat}} \) (e) = 4839

Dynamic range
DR = 446

DR (dB) = 53.0

DR (bit) = 8.8

Dark current
\(\mu_{c, \text{mean}} \) (DN/s) = —

\(\mu_{c, \text{mean}} \) (e/s) = —

\(\mu_{c, \text{var}} \) (e/s) = —